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Abstract

Research on localization and perception for Autonomous Driving (AD) is mainly
focused on camera and LiDAR data sets, rarely on radar data. Transferring data-
driven development processes to the radar domain, the obvious need for radar
data set generation is the first step to take. We propose the modular twofold cross
sensor Semantic Radar Labeling Framework (SeRaLF) for the automated offline
generation of semantic labels for radar raw detections. First, a CNN is applied to a
360 degree view of camera to generate semantic information in the near-field of
the scene. In parallel, a roof mounted LiDAR, covering both near and long range,
serves as alternative perception source on which a CNN is applied to semantically
segment the LiDAR point cloud data. Considering different mounting positions
and Field of Views (FoV), the labels of optical perception are radar-associated via
a projection into 2D image representation. In a subsequent fusion algorithm, each
detection is associated with a final label describing its semantic class. The fusion
algorithm considers consistency of both labels as well as uncertainties of the deep
neural networks based on Monte Carlo Dropout. The automated pipeline is tested
on real world data measurements. Subsequently, the proposed semantic radar labels
are subject of a semi-manual inspection step to correct erroneous labeled points.

1 Introduction

Environmental perception is a key challenge in the research field of AD and mobile robots. The
development of an automated labeling process based on vehicle sensors enables a competitive,
unbiased, and efficient data-enrichment pipeline to succeed in this field. Therefore, we aim to boost
the potential of radar sensors. Radar sensors are simple to integrate and reliable also in adverse
weather conditions [1]. They provide 3D coordinates and additional information about raw detections,
e.g. signal power or relative velocity. Both sparsity [2] and characteristic artifacts [3] pose challenges
for the perception task. Furthermore, the lack of completely annotated publicly available data sets
of radar data limits research on data-driven approaches for radar [4]. Classically, Adaptive Cruise
Control (ACC) [5] and state-of-the-art object detection rely on radar, e.g. [2]. But, to the authors
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best knowledge, radar raw signals are rarely used in direct 3D fashion for AD or Advanced Driver
Assistance Systems (ADAS).

In this workshop, we utilize the on-board sensors in a generic method to automatically annotate radar
detections. The Semantic Radar Labeling Framework (SeRaLF) enables a competitive, unbiased
and efficient data-enrichment pipeline as an automated offline process to generate comparable radar
semantic data sets. Our framework SeRaLF applies the benefits of cross-modal sensors and is
composed of two pipelines: camera and LiDAR processing. Piewak [6] describes the availability of a
large amount of automatically labeled data as valuable start to work on machine learning approaches.

Our key contributions are the following:

1. A joint method to label real-world radar data from image processing of surround view
cameras as well as LiDAR scans.

2. A fusion proposal for radar label predictions from independent camera and LiDAR semantic
segmentation CNNs, considering label consistency and epistemic uncertainty of each CNN.

3. A simplified semi-manual annotation procedure using predictions of SeRaLF.

2 Related Work

To elaborate machine learning on radar, publicly available data sets comparable to KITTI [7] or
Waymo Open [8] lack radar raw detections. Interest to work on radar point cloud data gains attention
since the release of nuScenes [9] and Astyx [10] data set. As the only two available data sets
containing both radar detections and object instances respectively, they provide only 2D objects [9],
consider only front facing view [10], and do not focus on semantic labels for each detection.

Investigations e.g. on semantic scene understanding of radars by the means of neural networks in
supervised fashion e.g. [11, 4, 12] or other radar applications for perception in AD, require currently
expensive, non-scaleable manually labeled data sets of raw data [4].

For example the Convolutional Neural Network (CNN) HarDNet [13] yields very promising results
on camera data sets like Cityscapes [14]. The release of SemanticKITTI [15] boosted LiDAR based
semantic scene understanding, resulting in architectures as CNN RangeNet++ [16]. The transfer from
regular structures as image or LiDAR data to the radar domain introduces to deal with unordered data.
O. Schumann et al. [11] investigate semantic segmentation on radar data based on recurrent neural
networks and random forests. In continuation, Schumann et al. [12] also propose a radar semantic
segmentation approach using an adapted PointNet++ [17]. In addition to the above mentioned
approaches for semantic scene understanding, also other input forms such as birds-eye-view fashion
are applied for CNNs e.g. [4]. However, such approaches have in common that labeled data is
required e.g. [11, 4, 12].

Automatizing the labeling pipeline for LiDAR point cloud data sets by the means of camera processing,
Piewak et al. [6] achieve improvements of model training for semantic segmentation tasks on LiDAR
point clouds. With the application of deep learning models, uncertainty estimation [18, 19] gains
importance to detect failures or other limitations of the models.

3 Method

The proposed framework in Figure 1 consists of parallel camera and LiDAR semantic segmentation
CNNs. The fusion considers each CNNs’ uncertainty and label consistency of the independent label
proposals for each radar detection. SeRaLF is implemented in the Robot Operating System [20].

Firstly, radar detections from various sensors are transformed into a common reference coordinate
system and concatenated to one point cloud consisting of points pi,t ∈ R3 at time t. To enable
comparison of the multi-modal sensors in parallel segmentation branches, time synchronization [21]
is necessary. After fusion, SeRaLF annotates each detection pi,t with a proposed semantic class
label ŷsem(pi,t). To simplify the problem of annotating radar detections with semantic labels, the
number of classes in Cityscapes [14] and SemanticKITTI [15] are clustered to a reduced label set
ŷsem(pi,t) ∈ { flat a , human a , vehicle a , construction a , nature a , pole
a , unknown a }.
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Figure 1: SeRaLF (red: LiDAR branch, blue: cam-
era branch).

Figure 2: Sensor setup.

Table 1: Sensor setup details.

Name Details

Camera 4 x Monocular surround view camera (series equipment)
LiDAR Rotating Time-of-Flight LiDAR (centrally roof-mounted, 40 channel)
Radar 77 GHz FMCW Radar (160 degree hor. FoV, ±10 degree hor. FoV)

Camera branch In order to apply a state-of-the-art segmentation CNN on fisheye camera images,
image preprocessing is necessary to reduce the domain shift from training images to the applied
domain. We propose to apply distortion correction using OCamCalib [22], and a perspective transform
subsequently to change the FoV to a straight view on the scene. Applying this preprocessing, the CNN
HarDNet [13], which is originally trained on the Cityscapes data set [14], yields sound segmentation
results. Considering the camera in- and extrinsics, each radar detection pi,t is projected into the
corresponding camera image from which ŷsem,camera(pi,t) is derived. Note, sky a is an image
segmentation label which is not appropriate to radar objects. Thus, in case a radar detection is
projected onto a sky area or not visible in a camera image the radar label is changed to unknown a .

LiDAR branch For the purpose of using RangeNet++ [16], pretrained on SemanticKITTI [15],
to segment LiDAR scans, we apply the proposed preprocessing to generate an image-like LiDAR
representation as input for the CNN inference. In the following, sensor in- and extrinsics help to
project each radar detection pi,t into the corresponding LiDAR image. Hence, ŷsem,lidar(pi,t) can
be obtained. Similar to the procedure in the camera branch, detections out of direct LiDAR FoV or
objects inside the LiDAR blind spot close to the vehicle, receive the label unknown a . Same applies
for radar objects e.g. obscured by other objects in the foreground and only visible for radar sensors,
not for visual sensors.

Fusion To select the applicable label, ŷsem,lidar(pi,t) and ŷsem,camera(pi,t) are fused. The Monte
Carlo Dropout (MCD) from Kendall et al. [18, 19], yields an epistemic or model uncertainty estimate
of the CNNs, which we use to detect failures. By randomly deactivating certain neurons in repeated
inference steps on a single sample, MCD proposes small deviations among the inference outputs
to indicate low CNN model uncertainty. In contrast, the aleatoric uncertainty characterizes the
variation due to the input data of camera and LiDAR. However, following the argument of Kiureghian
et al. [23] that for ideal models aleatoric uncertainty merges into epistemic uncertainty, a clear
distinction remains open. Experiments with MCD proofed the difficulty to seperate model from input
uncertainty.

By thresholding the results of MCD in Figure 1, we obtain binary images to describe whether a
prediction is reliable or not. Comparing the independent labels plus their reliability score, the rule
based final fusion decides the resulting annotation ŷsem(pi,t). If there is only one semantic prediction
not equal to unknown a , we adopt it. Moreover, consistent predictions of both sensors increase a
label’s reliability. In case of label conflicts, the more reliable sensor overrules. At conflicting labels
with equal reliability, the label unknown a is considered. Other rule-based approaches are pending.
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Figure 3: Results of semantic segmentation on fisheye camera (a) and after preprocessing (b).

Figure 4: Results of semantic segmentation on LiDAR image (a) and scene overview (b).

Semi-manual labeling The labels of the automated pipeline SeRaLF are not perfectly correct. To
obtain ground truth labels for evaluation of algorithms, we transfer the predictions of SeRaLF to
the point labeler [15] described as an initial guess. Thus, to correct a few falsely predicted, mostly
overestimated labels is more comfortable compared to a labeling from scratch. Furthermore, Piewak
et al. [6] demonstrate that automatically generated data, also containing errors, help to boost the
training of deep neural networks. Even though errors may be learned by training on loosely labeled
data sets, a fine-tuning with correct ground-truth data overcomes this errors [6].

4 Experiments

Sensor setup and experimental design We apply our approach on real world data and hardware.
The vehicle test setup is introduced in Figure 2 and sensor set details are found in Table 1. We evaluate
SeRaLF on three reference test tracks (urban area, small village, industrial park) in qualitative fashion.

Results Figure 3 shows the potency of our proposed preprocessing of raw fisheye images to feed
regular image CNNs. Moreover, Figure 4 illustrates promising LiDAR results on the depicted scene.

Figure 5 shows the results of the binarized uncertainty images. Promising results in Figure 5 (c) are
indicated as reliable blank areas. In image regions of Figure 5(a) in which by manual inspection, or in
Figure 5(b) for unknown scenes, one expects higher uncertainty, MCD correctly predicts uncertainty
in form of black pixels. Thus, we rely on MCD to detect failure of both CNNs. Figure 6 illustrates
the results of the annotated radar data after fusion. The rich visualization in Figure 6 with LiDAR
underlay facilitates the subsequent manual inspection and correction of misinterpreted labels. Note,
that the radar raw point cloud is shown in Figure 6. Since Holder et al. [3] describe radar artifacts to
lead to wrong labels, a combination with de-nosing of radar data is recommended.

Figure 5: Input (i.), semantic segmentation (ii.)
and binarized uncertainty (white: reliable, black:
uncertain, iii.) on scenes (a-c).

Figure 6: Results of semantic radar labels after
fusion of scene depicted in Figure 4 (b).
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5 Conclusion

SeRaLF provides a generic tool to annotate radar data with semantic labels from camera and LiDAR
sensor. This is achieved by fusing the predictions of the camera and LiDAR branch, considering
consistency between the branches predictions, and the epistemic uncertainty of each CNN evaluated
by the MCD procedure. However, the annotation accuracy highly depends on the results of the
two branches and may contain errors. Providing increased data sets for initial training of neural
networks leverages generalization. SeRaLF helps to accelerate the generation of ground data utilizing
a subsequent semi-manual annotation correction procedure. Furthermore, SeRaLF enables an
enrichment of existing data sets like nuScenes [9] with semantic labels.
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